dowhy.gcm.ml 包#
子模块#
dowhy.gcm.ml.autogluon 模块#
dowhy.gcm.ml.classification 模块#
- class dowhy.gcm.ml.classification.ClassificationModel[source]#
基类:
PredictionModel- abstract property classes: List[str]#
- class dowhy.gcm.ml.classification.SklearnClassificationModel(sklearn_mdl: Any)[source]#
基类:
SklearnRegressionModel,ClassificationModel- property classes: List[str]#
- class dowhy.gcm.ml.classification.SklearnClassificationModelWeighted(sklearn_mdl: Any)[source]#
基类:
SklearnRegressionModelWeighted,ClassificationModel- property classes: List[str]#
- dowhy.gcm.ml.classification.create_ada_boost_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_extra_trees_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_gaussian_nb_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_gaussian_process_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_hist_gradient_boost_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_knn_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_logistic_regression_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_polynom_logistic_regression_classifier(degree: int = 3, **kwargs_logistic_regression) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_random_forest_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_support_vector_classifier(**kwargs) SklearnClassificationModel[source]#
dowhy.gcm.ml.prediction_model 模块#
dowhy.gcm.ml.regression 模块#
- class dowhy.gcm.ml.regression.LinearRegressionWithFixedParameter(coefficients: ndarray, intercept: float)[source]#
基类:
PredictionModel
- class dowhy.gcm.ml.regression.SklearnRegressionModel(sklearn_mdl: Any)[source]#
基类:
PredictionModelsklearn 模型的通用包装类。
- property sklearn_model: Any#
- dowhy.gcm.ml.regression.create_ada_boost_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_elastic_net_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_extra_trees_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_gaussian_process_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_hist_gradient_boost_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_knn_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_lasso_lars_ic_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_lasso_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_linear_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_linear_regressor_with_given_parameters(coefficients: ndarray, intercept: float = 0) LinearRegressionWithFixedParameter[source]#
- dowhy.gcm.ml.regression.create_polynom_regressor(degree: int = 2, **kwargs_linear_model) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_random_forest_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_ridge_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_support_vector_regressor(**kwargs) SklearnRegressionModel[source]#
模块内容#
此模块定义了由不同的 FunctionalCausalModel 实现使用的 PredictionModel 实现,例如 PostNonlinearModel 或 AdditiveNoiseModel。